Improper Integrals and Histograms

Concepts

1. An improper integral is an integral where one or two of the bounds of integration are $\pm \infty$. If both bounds are $\pm \infty$, we first need to split up the integral at some finite point (usually we pick 0 for convenience). Then to compute a one-sided improper integrals, we first write it as a limit as $n \rightarrow \infty$ then compute the limit. If any improper integral is ∞, we say the integral does not exist (even in the case of two sided integrals we get $\infty-\infty)$.
For a histogram, the area of the rectangle represents the probability of lying inside that region. So, if there is a 10% chance of X being between 10 and 15 , the height of the rectangle would be $0.1 /(15-10)=0.02$.

Example

2. Calculate $\int_{-\infty}^{\infty} e^{-|x|} d x$.

Solution: We split it up at 0 to get

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{-|x|} d x=\int_{-\infty}^{0} e^{-|x|} d x+\int_{0}^{\infty} e^{-|x|} d x \\
=\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\left.\lim _{t \rightarrow-\infty} e^{x}\right|_{t} ^{0}+\lim _{t \rightarrow \infty}\left(-e^{-x}\right) \mid 0^{t} \\
=1-0+0-(-1)=2 .
\end{gathered}
$$

3. Suppose exam scores are given by the following data. Construct a histogram of the data with intervals $[40,50),[50,60), \ldots,[90-100)$.

Score	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
Frequency	3	2	8	4	2	1

Solution: There are a total of 20 scores so we take the probabilities of getting in each range (frequency/20) then divide by the width of the rectangle (10). This gives heights of $0.015,0.01,0.04,0.02,0.01,0.005$.

Problems

4. True FALSE When calculating $\int_{-\infty}^{\infty} f(x) d x$, the final result depends on the a we choose to split it up as $\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$.

Solution: The answer does not depend on a.
5. TRUE False Since the function $f(x)=x$ is odd, we know that $\int_{-n}^{n} f(x) d x=0$ for all integers n.

Solution: Since it is odd, we can think of the area left of 0 and the area right of 0 as canceling.
6. True FALSE Since the function $f(x)=x$ is odd, we know that $\int_{-\infty}^{\infty} f(x) d x=0$ for all integers n.

Solution: When we split up the integral, we get $\int_{0}^{\infty} x d x$ and $\int_{-\infty}^{0} x d x$ which give ∞ and $-\infty$ respectively. Thus, the integral diverges.
7. Compute $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$.

Solution: We split it up to get

$$
\begin{gathered}
\int_{-\infty}^{\infty} 2 x e^{-x^{2}}=\lim _{t \rightarrow-\infty} \int_{t}^{0} 2 x e^{-x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} 2 x e^{-x^{2}} d x=\lim _{t \rightarrow-\infty} \int_{t^{2}}^{0} e^{-u} d u+\lim _{t \rightarrow \infty} \int_{0}^{t^{2}} e^{-u} d u \\
=\lim _{t \rightarrow-\infty}-e^{0}+e^{-t^{2}}+\lim _{t \rightarrow \infty}-e^{-t^{2}}+e^{0}=-1+1=0
\end{gathered}
$$

8. Draw a new histogram using the previous data except with intervals $[40,60),[60,80),[80,100)$.

Solution: We just add the frequencies of the two score ranges then we need to now divide the probability by 20 . So the heights should be $\frac{5}{400}, \frac{12}{400}, \frac{3}{400}$.

Continuous Probability

Concepts

9. When we deal with random variables that can take a continuum of values, we have to use PDFs as opposed to PMFs. In this case, the value of the PMF does not give you a probability of picking that value, but instead gives you a relative likelihood. So if $f(x)=2 f(y)$, where f is the PDF, you expect to get a value near x around twice as likely as you are to get a value near y. Another difference from PMFs is now to calculate probabilities, we must take the integral along the interval we are asking about. So $P(a \leq$ $X \leq b)=\int_{a}^{b} f(x) d x$. The most important property of a PDF is $\int_{-\infty}^{\infty} f(x) d x=1$.
A CDF is a function $F(x)$ where $F(x)=P(X \leq x)$, it tells us that probability of getting a value less than or equal to x. It is just defined as $F(x)=\int_{-\infty}^{x} f(x) d x$. It satisfies three important properties:

- $F(x)$ is nondecreasing. So if $x \leq y$, then $F(x) \leq F(y)$.
- $\lim _{x \rightarrow-\infty} F(x)=0$.
- $\lim _{x \rightarrow \infty} F(x)=1$.

Example

10. Suppose that the probability density function P that an atom emits a gamma wave with the PDF $P(t)=C e^{-10 t}$ for $t \geq 0$ and $P(t)=0$ for $t<0$. Find P and calculate the CDF associated with P.

Solution: We solve the differential equation for P. We have that

$$
\int \frac{d P}{P}=\int-10 d t \Longrightarrow \ln P=-10 t+C \Longrightarrow P=C e^{-10 t}
$$

Now in order for this to be a PDF, we need its integral to be 1 . Thus, we have that

$$
\int_{-\infty}^{\infty} P(t)=\int_{0}^{\infty} C e^{-10 t}=\left.\frac{-C e^{-10 t}}{10}\right|_{0} ^{\infty}=\frac{C}{10} .
$$

Hence $C=10$ and $P(t)=10 e^{-10 t}$.
To find the CDF, we take the integral, for $t \geq 0$, we have that

$$
F(t)=\int_{-\infty}^{t} 10 e^{-10 t}=\int_{0}^{t} 10 e^{-10 t}=-\left.e^{-10 t}\right|_{0} ^{t}=1-e^{-10 t} .
$$

11. For the above PDF, find the probability that a gamma wave is emitted from -1 seconds to 1 second.

Solution: This is just the integral from -1 to 1 . But, the probability is 0 from -1 to 0 so we just need to compute $P(0 \leq X \leq 1)$ which is

$$
\int_{0}^{1} P(t) d t=F(1)=1-e^{-10}
$$

Problems

12. True FALSE Since the CDF is an antiderivative of the PDF, there are multiple CDFs for a given PDF (and they differ by a $+C$).

Solution: We choose the CDF that gives us $F(-\infty)=0$, which is like an initial condition and fixes the antiderivative.
13. True FALSE The area underneath a CDF must be equal to 1 .

Solution: There is no such requirement on the CDF, and in fact, the area will actually diverge.
14. True FALSE A PDF must be continuous.

Solution: This is false. Look at the example above for a counterexample.
15. True FALSE Let $P(x)=C x^{3}$ for $-1 \leq x \leq 2$ and 0 otherwise. Since $\int_{-1}^{3} P(x) d x=$ $C(16-1 / 4)$, setting $C=(16-1 / 4)^{-1}$ makes P into a PDF.

Solution: P cannot possibly be a PDF because it is negative at some places.
16. Let $P(x)=C x^{2}(10-x)$ on $0 \leq x \leq 10$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.

Solution: In order for P to be a PDF, it needs to have integral 1. So

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{0}^{10} C x^{2}(10-x) d x=\frac{2500 C}{3}
$$

Hence, we have that $C=\frac{3}{2500}$.
The CDF is the integral

$$
\int_{-\infty}^{x} P(t) d t=\int_{0}^{x} \frac{3 t^{2}(10-t)}{2500}=\frac{(40-3 x) x^{3}}{10000}
$$

for $0 \leq x \leq 10$ and 0 for $x \leq 0$ and 1 for $x \geq 10$.
The probability that we choose a number between 0 and 1 is just the integral

$$
\int_{0}^{1} P(x) d x=\int_{0}^{1} \frac{3 x^{2}(10-x)}{2500} d x=\frac{37}{10000}=0.37 \% .
$$

17. Let $P(x)=C(x-1)(x+1)$ on $-1 \leq x \leq 1$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.

Solution: We need

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{-1}^{1} C(x-1)(x+1) d x=\frac{-4}{3} C=1
$$

Hence $C=\frac{-3}{4}$. The CDF is

$$
F(x)=\int_{-\infty}^{x} P(t) d t=\int_{-1}^{x}-3 / 4(t-1)(t+1) d t=\frac{-x^{3}+3 x+2}{4} .
$$

for $-1 \leq x \leq 1$ and 0 for $x \leq-1$ and 1 for $x \geq 1$.
The probability that we choose a number between 0 and 1 is

$$
F(1)-F(0)=\int_{0}^{1} P(x) d x=\int_{0}^{1}-3 / 4(x-1)(x+1) d x=\frac{1}{2}
$$

18. Let $P(x)$ satisfy $\frac{d P}{d x}=2 x$ for $0 \leq x \leq 1$ and $P(x)=0$ otherwise. Find P such that it is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1 .

Solution: We have that $P(x)=x^{2}+C$ for $0 \leq x \leq 2$ and for this to be a PDF, we require that

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{0}^{1} x^{2}+C d x=\frac{1}{3}+C=1 .
$$

Hence $C=\frac{2}{3}$. The CDF is

$$
F(x)=\int_{-\infty}^{x} P(t) d t=\frac{x\left(x^{2}+2\right)}{3}
$$

for $0 \leq x \leq 1$ and 0 for $x \leq 0$ and 1 for $x \geq 1$.
The probability that we choose a number between 0 and 1 is 1 because our PDF is only between 0 and 1 .
19. Let $F(x)=\frac{x-1}{x+1}$ for $x \geq 1$ and 0 for $x \leq 1$. Show that F is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2 .

Solution: This is a CDF because it is continuous since $F(1)=0$ and $\lim _{x \rightarrow \infty} F(x)=$ 1 and F is non-decreasing. The PDF is

$$
f(x)=\frac{d}{d x} F(x)=\frac{2}{(x+1)^{2}}
$$

for $x \geq 1$ and 0 for $x \leq 1$. The probability that we choose a number between 1 and 2 is

$$
\int_{1}^{2} f(x) d x=F(2)-F(1)=\frac{1}{3} .
$$

20. Find numbers A, B such that $A \arctan (x)+B$ is a CDF and find the PDF associated with it. Find the probability that we choose a number between 0 and 1.

Solution: We know that $\arctan (x)$ is nondecreasing and all we need is for the range to be $(0,1)$. The original range is $(-\pi / 2, \pi / 2)$ and so letting $A=1 / \pi$ changes our range to $(-1 / 2,1 / 2)$, and shifting up by $B=1 / 2$ gives a range of $(0,1)$. Thus, we have that $A=\frac{1}{\pi}$ and $B=\frac{1}{2}$. The PDF is

$$
f(x)=\frac{d}{d x} F(x)=\frac{1}{\pi+\pi x^{2}} .
$$

The probability that we choose a number between 0 and 1 is

$$
\int_{0}^{1} f(x) d x=F(1)-F(0)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4} .
$$

21. Let $F(x)=\ln x$ for $1 \leq x \leq a$ and $F(x)=0$ for $x \leq 1$ and $F(x)=1$ for $x \geq a$. Find a such that F is a continuous CDF and find the PDF associated with it. Find the probability that we choose a number between 1 and 2 .

Solution: In order for this to be a CDF, we require need this to be nondecreasing so a is such that $\ln (a)=1$ or $a=e$. The PDF is the derivative so $f(x)=\frac{1}{x}$ between 1 and e and equal to 0 otherwise. The probability that we choose a number between 1 and 2 is $\ln (2)-\ln 1=\ln 2$.

